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» Given input images, scene graph generation (SGG) [1] aims to » We propose DLFE: augmenting data with random flipping, and
produce comprehensive, graphical representations describing visual averaging over multiple epochs, to introduce more samples.
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Coupled with the SGG Model from [1]

> In this paper we show that, due to the missing labels, SGG can be Experiments
viewed as a Learning from Positive and Unlabeled data (PU » |s DLFE more effective in estimating label frequency?
Iear ning) prOblem, Where the A eporting biaS can be I emoved by taklng Predicate Classification (PredCls) Scene Graph Classification (SGCls) Scene Graph Detection (SGDet)
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DLFE significantly alleviates the long tail and achieves state-of- VCTree-Train-Est [12] 25.0 39.1 52.4 21.0 32.2 39.4 8.1 13.0 17.1
prominently more informative and less-biased scene graphs. » Does DLFE help in debiasing scene graph generation?
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2. Imbalance in missing labels (reporting bias):

» Because easier predicates (e.g., on) get annotated more than harder
ones (e.g., parked on) during collection (e.qg., VG dataset)

» The predicted probabilities of the hard ones are thus under-estimated
more than the easy ones, causing the long tail in the VG dataset.

» [Definition] Label frequency: the per-class fraction of labeled, positive
examples in all the examples, which can be estimated (details below).

Methodo|ogy Conclusion
» \We draw inspiration from Learning from Positive and Unlabeled » we are the first to tackle long-tailed SGG with the cause (unbalanced
Data [2]. Examples in VG dataset are a set of triplets {(x, y, s)}. missing labels) instead of its superficial effect (long tail distribution).
> x be an example (candidate object pair) > We vievy SGG as a PU problgm and we remove the reporfting bias by
> y €{0,.., K} be its true class, where K is the number of predicate recovering the per-class unbiased probabilities from the biased ones.
classes. » We propose DLFE which provides more reliable label frequency
> s €{0,..,K}is alabel and s = 0 if x is unlabeled. estimates using augmented data and averages over multiple epochs
» Whenr #0, s=r=y=r;Whenr=s=0,ycanbe0 > We show that DLFE is more effective in estimating label frequencies,
(background) or any natural number. and SGG models with DLFE achieves SOTA debiasing performance

in VG dataset and produce significantly more balanced scene graphs.
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» Biased probability of a non-background class r (r # 0):

pis=r|x)=py=rs=r|x) =py=r|lOpGc=r|y=rx)
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