

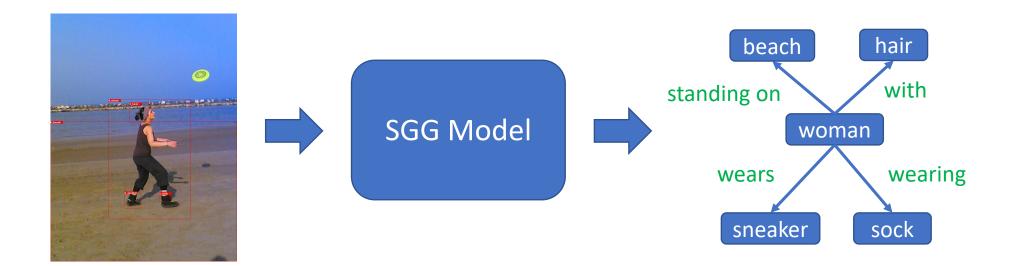
Recovering the Unbiased Scene Graphs from the Biased Ones

Meng-Jiun Chiou¹, Henghui Ding², Hanshu Yan¹, Changhu Wang², Roger Zimmermann¹ and Jiashi Feng¹

¹National University of Singapore ²ByteDance AI Lab

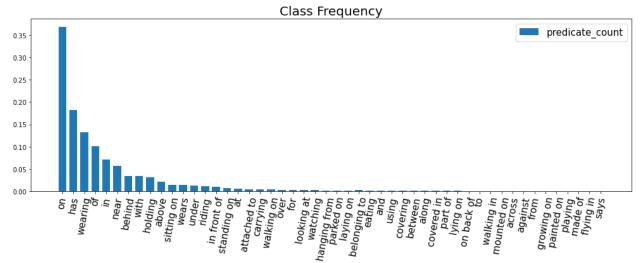
Scene Graph¹ Generation (SGG)

 Given images, SGG aims to predict visual relationships among salient objects

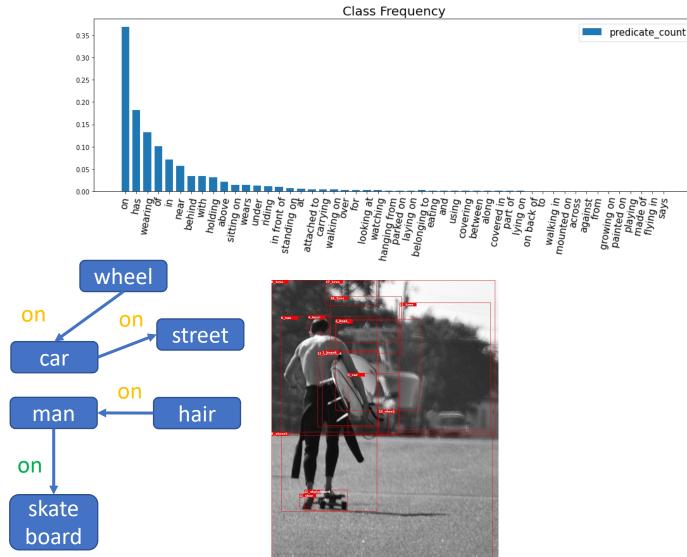


¹Johnson et al. "image retrieval using scene graphs." In CVPR 2018

Long Tail Problem in SGG with the VG dataset

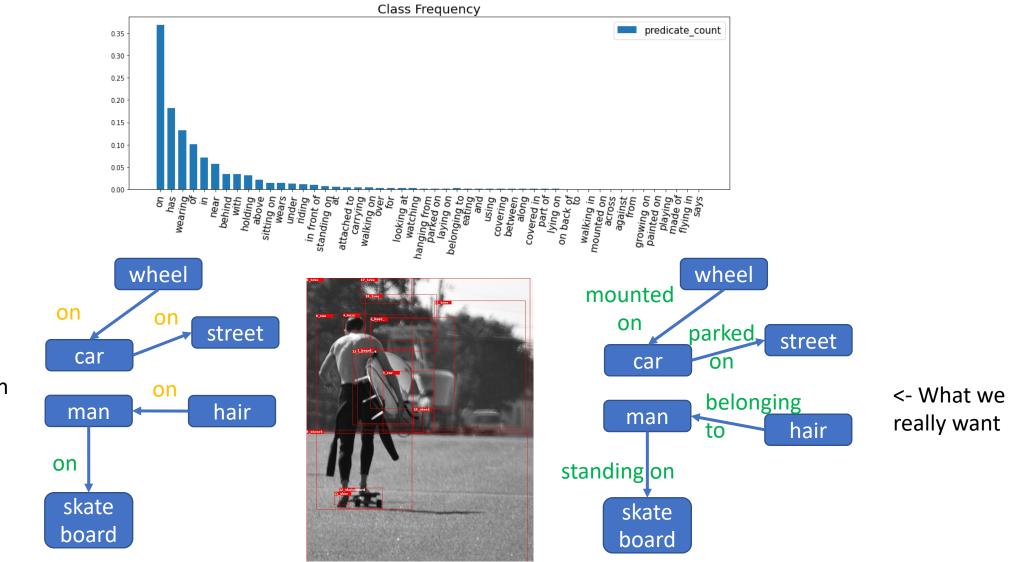


Long Tail Problem in SGG with the VG dataset



What we get with a biased model:

Long Tail Problem in SGG with the VG dataset



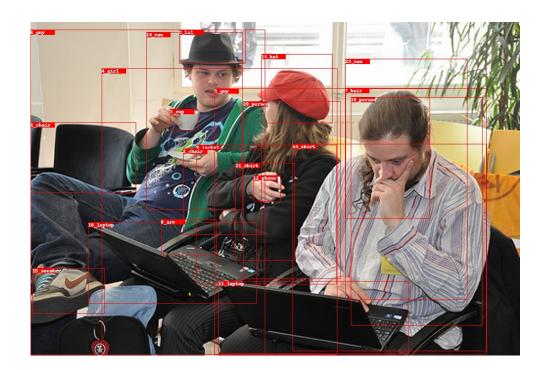
What we get with a biased model:

Not All Long Tails are Equal

• Unlike long tails in other vision tasks like image classification, the long tail in SGG is significantly affected by **the imbalance in missing labels**

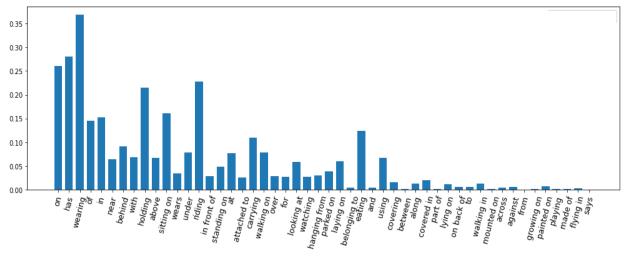
Not All Long Tails are Equal

- Unlike long tails in other vision tasks like image classification, the long tail in SGG is significantly affected by **the imbalance in missing labels**
- Missing Labels due to the cubic number of predicates
- For each image:
 - N objects, K predicate classes
 - KN(N-1) Possibilities
- **Missing label bias** causes the predicted probabilities to be under-estimated



Not All Long Tails are Equal

- Unlike long tails in other vision tasks like image classification, the long tail in SGG is significantly affected by the imbalance in missing labels
- Label frequency: the per-class fraction of labeled, positive examples in all the examples
- The imbalance in missing labels, or reporting bias: easier predicates (e.g., on) get annotated more than harder ones (e.g., parked on)
- The predicted probabilities of the hard ones are thus under-estimated more than the easy ones, causing the long tail in the VG dataset



Estimated Label Frequency by MOTIFS¹ in PredCls mode

¹Zellers et al. "Neural Motifs: Scene Graph Parsing with Global Context." CVPR'18

- Examples in VG dataset are a set of triplets {(x, y, s)}.
 - *x* be an example (candidate object pair)
 - $y \in \{0, ..., K\}$ be its true class, where K is the number of predicate classes.
 - $s \in \{0, ..., K\}$ is a label and s = 0 if x is unlabeled.
 - When $s = r \Rightarrow y = r$; When s = 0, y can be 0 (background) or any natural number.

- Examples in VG dataset are a set of triplets {(x, y, s)}.
 - *x* be an example (candidate object pair)
 - $y \in \{0, ..., K\}$ be its true class, where K is the number of predicate classes.
 - $s \in \{0, ..., K\}$ is a label and s = 0 if x is unlabeled.
 - When $s = r \Rightarrow y = r$; When s = 0, y can be 0 (background) or any natural number.
- Biased probability of a non-background class $r \ (r \neq 0)$:

$$p(s = r|x) = p(y = r, s = r|x)$$
$$= p(y = r|x)p(s = r|y = r, x)$$

¹Elkan et al. "Learning classifiers from only positive and unlabeled data". In SIGKDD 2008.

- Examples in VG dataset are a set of triplets {(x, y, s)}.
 - *x* be an example (candidate object pair)
 - $y \in \{0, ..., K\}$ be its true class, where K is the number of predicate classes.
 - $s \in \{0, ..., K\}$ is a label and s = 0 if x is unlabeled.
 - When $s = r \Rightarrow y = r$; When s = 0, y can be 0 (background) or any natural number.
- Biased probability of a non-background class $r \ (r \neq 0)$:

$$p(s = r|x) = p(y = r, s = r|x)$$
$$= p(y = r|x)p(s = r|y = r, x)$$

• Unbiased probability:

Propensity score

$$p(y = r|x) = \frac{p(s=r|x)}{p(s=r|y=r,x)}$$

¹Elkan et al. "Learning classifiers from only positive and unlabeled data". In SIGKDD 2008.

- Examples in VG dataset are a set of triplets {(x, y, s)}.
 - x be an example (candidate object pair)
 - $y \in \{0, ..., K\}$ be its true class, where K is the number of predicate classes.
 - $s \in \{0, ..., K\}$ is a label and s = 0 if x is unlabeled.
 - When $s = r \Rightarrow y = r$; When s = 0, y can be 0 (background) or any natural number.
- Biased probability of a non-background class $r \ (r \neq 0)$:

$$p(s = r|x) = p(y = r, s = r|x)$$
$$= p(y = r|x)p(s = r|y = r, x)$$

• Unbiased probability: $p(y = r|x) = \frac{p(s=r|x)}{p(s=r|y=r,x)} \approx \frac{p(s=r|x)}{p(s=r|y=r)}$ (by SCAR assumption)

¹Elkan et al. "Learning classifiers from only positive and unlabeled data". In SIGKDD 2008.

Estimator of Label Frequencies

 Label frequency can be estimated by averaging over per-class biased probability predicted on a train/val set¹:

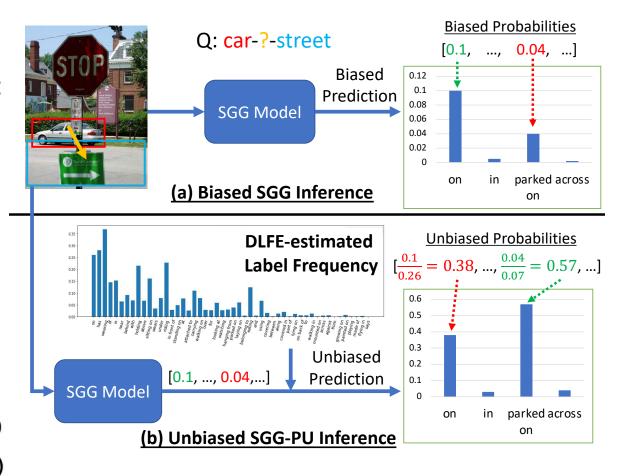
(Train-Est)
$$c_r = P(s = r | y = r)$$

 $\approx \frac{1}{N_r} \sum_{(x,y=r) \in D} p(s = r | x),$

• Full Derivation

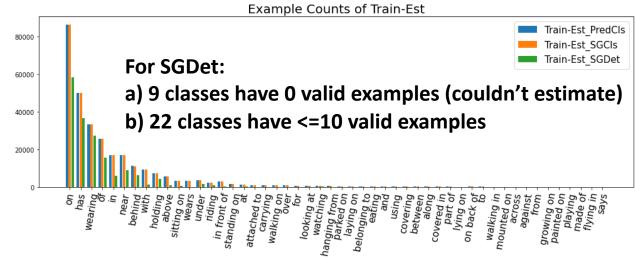
$$p(s = r|x) = p(s = r|x, y = r)p(y = r|x)$$

+ $p(s = r|x, y \neq r)p(y \neq r|x)$
= $p(s = r|x, y = r) \times 1 + 0 \times 0$ (since y=r)
= $p(s = r|y = r)$, (the SCAR assumption)



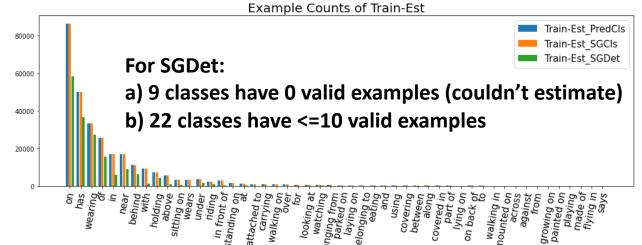
Towards a Better Label Frequency Estimator

- Traditional estimator of label frequency is not feasible in the harder SGG setting (i.e., SGDet), as there's no *valid* example for some classes
- More valid examples are also missing for tail classes: because they are concentrated in a much smaller number of images, not matching a bounding box could invalidate lots of examples.



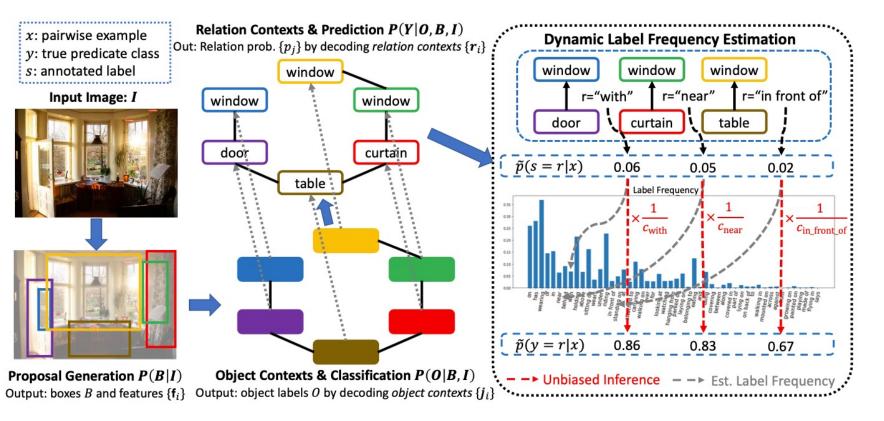
Towards a Better Label Frequency Estimator

- Traditional estimator of label frequency is not feasible in the harder SGG setting (i.e., SGDet), as there's no *valid* example for some classes
- More valid examples are also missing for tail classes: because they are concentrated in a much smaller number of images, not matching a bounding box could invalidate lots of examples.



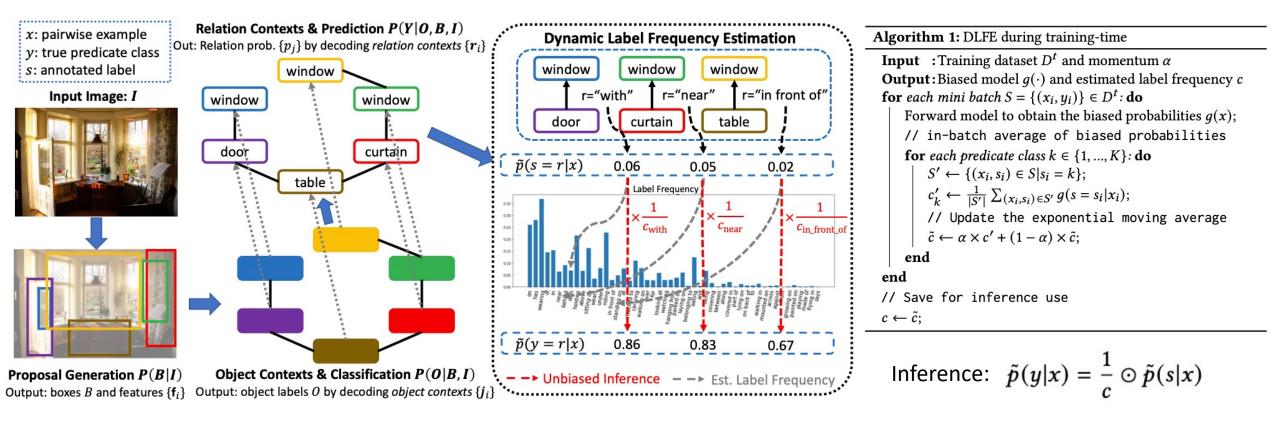
 We propose to take advantage of data augmentation such as random flipping and averaging over multiple epochs to introduce more samples

Dynamic Label Frequency Estimation (DLFE)



SGG Model from (Zellers et al. "Neural Motifs: Scene Graph Parsing with Global Context." CVPR'18)

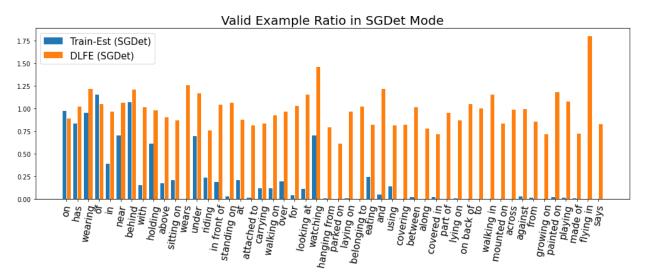
Dynamic Label Frequency Estimation (DLFE)

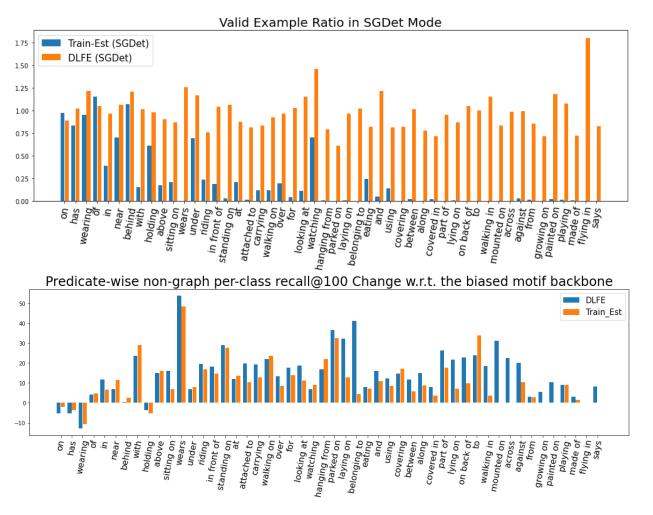


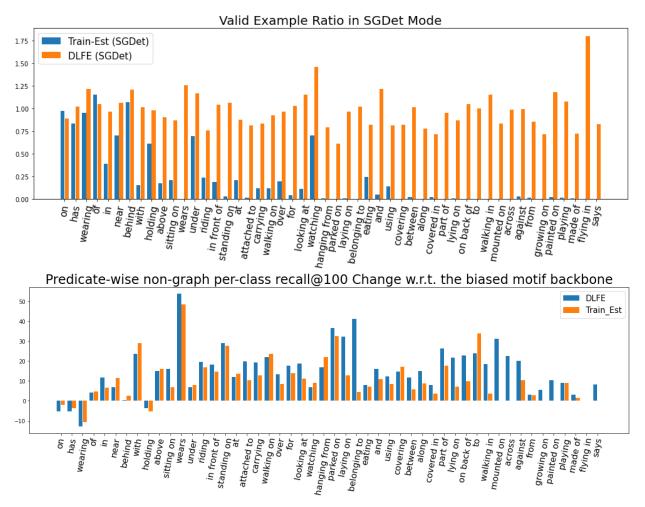
SGG Model from (Zellers et al. "Neural Motifs: Scene Graph Parsing with Global Context." CVPR'18)

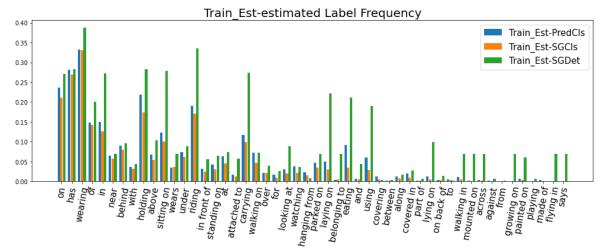
Experiments & Metrics

- Experimented with two popular SGG models: Motifs¹ & VCTree²
- The VG150 split of Visual Genome dataset
 - 62,723 images for training, 5,000 for validation and 26,446 for testing
 - 150 object categories, 50 predicate classes
- Recalls@K, where K ∈ [20, 50, 100]
 - Plain Recall (R@K)
 - Mean Recall (mR@K)
 - Non-graph constraint Recalls (ng-R@K, ng-mR@K)
 - Head (top-15 frequent predicates), tail (last-15), and middle (the others)
- Faster R-CNN with ResNext-101-FPN backbone as object detector

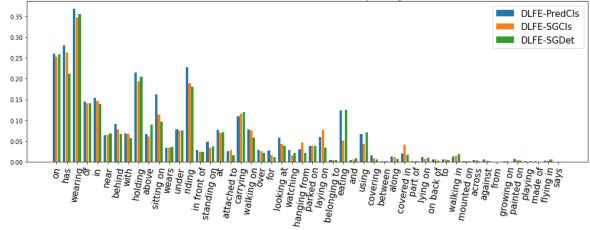








DLFE-estimated Label Frequency



	Predicate Classification (PredCls)			Scene Graph Classification (SGCls)			Scene Graph Detection (SGDet)		
Model	ng-mR@20	ng-mR@50	ng-mR@100	ng-mR@20	ng-mR@50	ng-mR@100	ng-mR@20	ng-mR@50	ng-mR@100
MOTIFS [37, 53]	19.9	32.8	44.7	11.3	19.0	25.0	7.5	12.5	16.9
MOTIFS-Train-Est [12]	24.4	38.9	50.5	17.1	26.1	32.8	8.9	14.1	18.9
MOTIFS-DLFE	30.0	45.8	57.7	17.6	25.6	32.0	11.7	18.1	23.0
VCTree [37, 38]	21.4	35.6	47.8	12.4	19.1	25.5	7.5	12.5	16.7
VCTree-Train-Est [12]	25.0	39.1	52.4	21.0	32.2	39.4	8.1	13.0	17.1
VCTree-DLFE	29.1	44.6	56.8	21.6	31.4	38.8	11.7	17.5	22.5

Table 4: Comparison of non-graph constraint mean recalls (ng-mR@K) between Train-Est and our DLFE, in PredCls, SGCls and SGDet.

Compare DLFE to other debiasing methods

	Predicate Classification (PredCls)			Scene Graph Classification (SGCls)			Scene Graph Detection (SGDet)		
Model	ng-mR@20	ng-mR@50	ng-mR@100	ng-mR@20	ng-mR@50	ng-mR@100	ng-mR@20	ng-mR@50	ng-mR@100
KERN [4]	-	36.3	49.0	-	19.8	26.2	-	11.7	16.0
GB-Net-β [◊] [39]	-	44.5	58.7	-	25.6	32.1	-	11.7	16.6
MOTIFS [†] [31, 41]	19.9	32.8	44.7	11.3	19.0	25.0	7.5	12.5	16.9
MOTIFS-Reweight [‡]	20.5	33.5	44.4	12.6	19.1	24.3	8.0	12.9	16.8
MOTIFS-L2+uKD [‡] [31]	-	36.9	50.9	-	22.7	30.1	-	14.0	19.5
MOTIFS-L2+cKD [‡] [31]	-	37.2	50.8	-	22.1	29.6	-	14.2	19.8
MOTIFS-TDE [†] [28]	18.7	29.0	38.2	10.7	16.1	21.1	7.4	11.2	14.9
MOTIFS-PCPL [†] [34]	25.6	38.5	49.3	13.1	19.9	25.6	9.8	14.8	19.6
MOTIFS-STL [†] [3]	15.7	29.4	43.2	10.3	18.4	27.2	6.4	10.6	15.0
MOTIFS-DLFE	30.0	45.8	57.7	17.6	25.6	32.0	11.7	18.1	23.0
VCTree [†] [29, 31]	21.4	35.6	47.8	14.3	23.3	31.4	7.5	12.5	16.7
VCTree-Reweight [‡]	20.6	32.5	41.6	14.1	21.3	27.8	8.0	12.1	15.9
VCTree-L2+uKD [‡] [31]	-	37.7	51.7	-	26.8	35.2	-	13.8	19.1
VCTree-L2+cKD [‡] [31]	-	38.4	52.4	-	26.8	35.8	-	13.9	19.0
VCTree-TDE [†] [28]	20.9	32.4	41.5	12.4	19.1	25.5	7.8	11.5	15.2
VCTree-PCPL [†] [34]	25.1	38.5	49.3	17.2	25.9	32.7	9.9	15.1	19.9
VCTree-STL [†] [3]	16.8	31.8	45.1	12.7	22.0	32.7	6.0	10.0	14.1
VCTree-DLFE	29.1	44.6	56.8	21.6	31.4	38.8	11.7	17.5	22.5

Table 1: Performance comparison in ng-mR@K on VG150 [14, 33]. Models in the first section are with VGG backbone [26]. \dagger models implemented or reproduced ourselves with ResNeXt-101-FPN [17] backbone. \ddagger models also with the same ResNeXt-101-FPN backbone while their performance are reported by the respective papers. \diamond model using external knowledge bases.

Compare DLFE to other debiasing methods

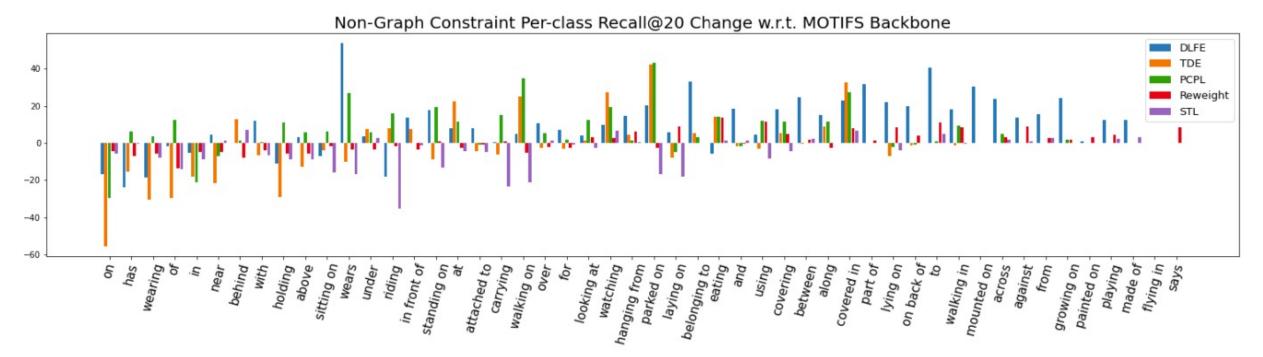
	Predicate	Classificati	ion (PredCls)	Scene Gr	aph Classifi	cation (SGCls)	Scene Gr	aph Detecti	ion (SGDet)
Model	mR@20	mR@50	mR@100	mR@20	mR@50	mR@100	mR@20	mR@50	mR@100
IMP+ [4, 33]	-	9.8	10.5	-	5.8	6.0	-	3.8	4.8
FREQ [29, 41]	8.3	13.0	16.0	5.1	7.2	8.5	4.5	6.1	7.1
MOTIFS [29, 41]	10.8	14.0	15.3	6.3	7.7	8.2	4.2	5.7	6.6
KERN [4]	-	17.7	19.2	-	9.4	10.0	-	6.4	7.3
VCTree [29]	14.0	17.9	19.4	8.2	10.1	10.8	5.2	6.9	8.0
GPS-Net [19]	17.4	21.3	22.8	10.0	11.8	12.6	6.9	8.7	9.8
GB-Net-β [◊] [39]	-	22.1	24.0	-	12.7	13.4	-	7.1	8.5
MOTIFS [†] [28, 41]	13.0	16.5	17.8	7.2	8.9	9.4	5.3	7.3	8.6
MOTIFS-Focal [‡] [18, 28]	10.9	13.9	15.0	6.3	7.7	8.3	3.9	5.3	6.6
MOTIFS-Resample [‡] [2, 28]	14.7	18.5	20.0	9.1	11.0	11.8	5.9	8.2	9.7
MOTIFS-Reweight [†]	14.3	17.3	18.6	9.5	11.2	11.7	6.7	9.2	10.9
MOTIFS-L2+uKD [‡] [31]	14.2	18.6	20.3	8.6	10.9	11.8	5.7	7.9	9.5
MOTIFS-L2+cKD [‡] [31]	14.4	18.5	20.2	8.7	10.7	11.4	5.8	8.1	9.6
MOTIFS-TDE [†] [28]	17.4	24.2	27.9	9.9	13.1	14.9	6.7	9.2	11.1
MOTIFS-PCPL [†] [34]	19.3	24.3	26.1	9.9	12.0	12.7	8.0	10.7	12.6
MOTIFS-STL [†] [3]	13.3	20.1	22.3	8.5	12.8	14.1	5.4	7.6	9.1
MOTIFS-DLFE	22.1	26.9	28.8	12.8	15.2	15.9	8.6	11.7	13.8
VCTree [†] [28, 29]	14.1	17.7	19.1	9.1	11.3	12.0	5.2	7.1	8.3
VCTree-Reweight [†]	16.3	19.4	20.4	10.6	12.5	13.1	6.6	8.7	10.1
VCTree-L2+uKD [‡] [31]	14.2	18.2	19.9	9.9	12.4	13.4	5.7	7.7	9.2
VCTree-L2+cKD [‡] [31]	14.4	18.4	20.0	9.7	12.4	13.1	5.7	7.7	9.1
VCTree-TDE [†] [28]	19.2	26.2	29.6	11.2	15.2	17.5	6.8	9.5	11.4
VCTree-PCPL [†] [34]	18.7	22.8	24.5	12.7	15.2	16.1	8.1	10.8	12.6
VCTree-STL [†] [3]	14.3	21.4	23.5	10.5	14.6	16.6	5.1	7.1	8.4
VCTree-DLFE	20.8	25.3	27.1	15.8	18.9	20.0	8.6	11.8	13.8

Table 2: Performance comparison of SGG models in graph-constraint mR@K on VG150 [14, 33] testing set. Models in the first section are with VGG backbone [26]. \dagger , \ddagger and \diamond are with the same meanings as in Table 1.

Compare DLFE to other debiasing methods

	Head	Recalls	Middle	e Recalls	Tail Recalls		
Model	R@50	R@100	R@50	R@100	R@50	R@100	
MOTIFS [†] [28, 41]	65.9	78.6	30.0	45.4	3.3	9.7	
MOTIFS-Reweight †	57.4	69.2	30.7	43.0	13.3	21.5	
MOTIFS-TDE [†] [28]	48.3	60.8	34.9	46.1	1.8	5.3	
MOTIFS-PCPL [†] [34]	66.5	77.6	41.8	55.2	6.0	13.2	
MOTIFS-STL [†] [3]	56.4	70.0	24.1	39.8	9.6	21.2	
MOTIFS-DLFE	61.9	72.4	42.8	54.2	31.8	44.6	
VCTree [†] [28, 29]	67.5	79.8	34.3	50.0	5.5	12.7	
VCTree-Reweight †	61.6	73.4	28.3	38.3	9.0	14.3	
VCTree-TDE [†] [28]	54.8	67.5	37.9	49.1	2.5	5.4	
VCTree-PCPL [†] [34]	64.5	75.9	42.6	54.2	6.9	16.1	
VCTree-STL [†] [3]	57.6	71.1	26.1	41.8	13.8	23.5	
VCTree-DLFE	57.5	68.3	36.0	48.2	26.5	38.1	

Table 3: Non-graph constraint head, middle and tail recalls (PredCls). †, ‡ and ◊ are with the same meanings as in Table 1. DLFE improves the tail recalls by a large margin.



Qualitative Results

Scene Graph Visualization

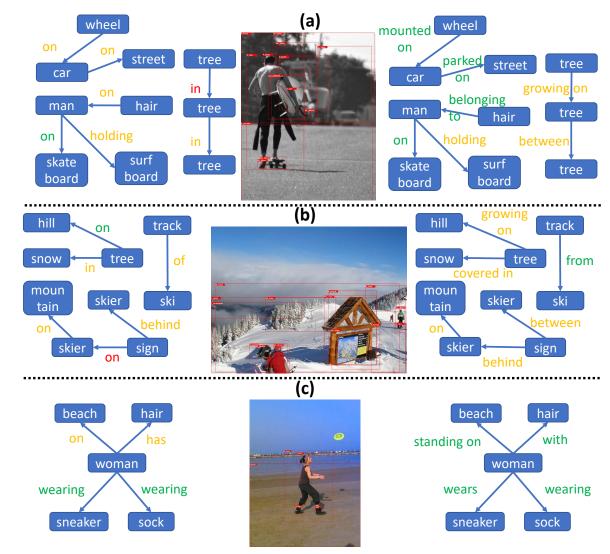
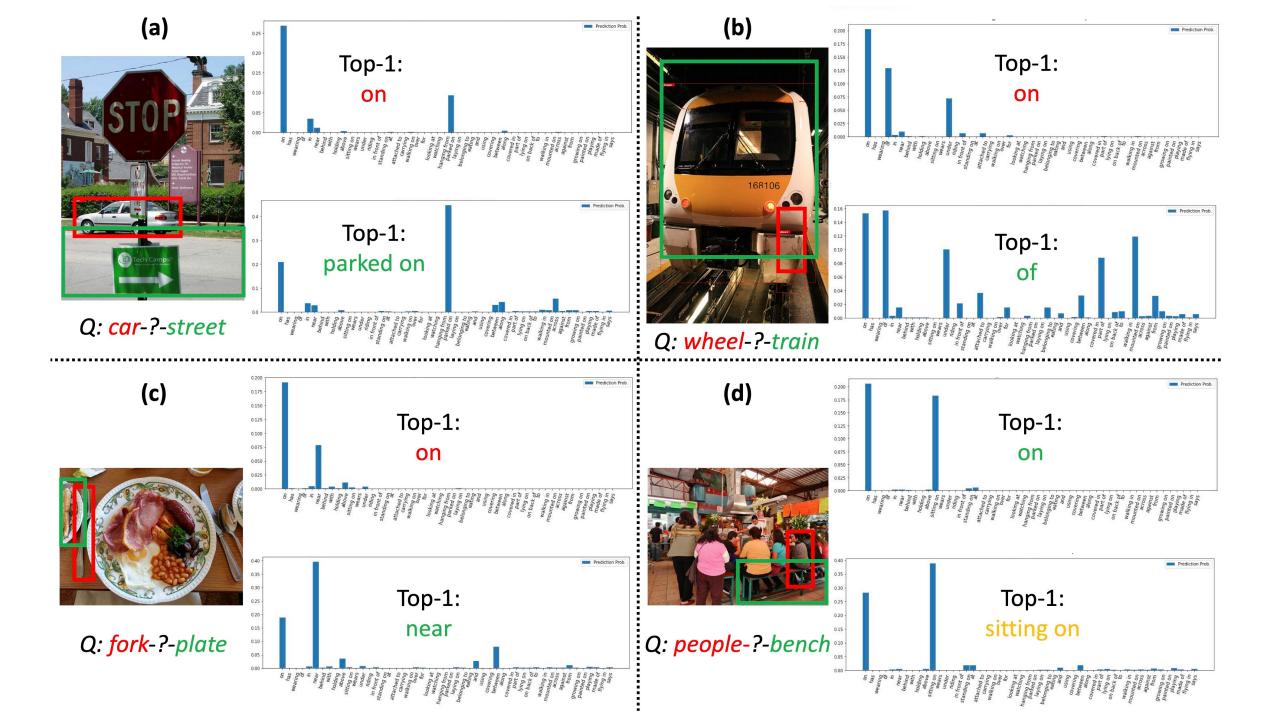


Figure 7: Example scene graphs generated by MOTIFS (left) and MOTIFS-DLFE (right) in PredCls. Green, red and tangerine color denote correct (GT), incorrect (Non-GT and weird) and acceptable (Non-GT but reasonable) predicate prediction, respectively. Only the top 1 prediction is shown for each object pair.



Conclusion

- we are among the first to deal with the long tail problem in SGG with the cause (unbalanced missing labels) instead of its superficial effect (long-tailed distribution).
- We view SGG as a PU problem and we remove the reporting bias by recovering the per-class unbiased probabilities from the biased ones.
- We propose DLFE which provides more reliable label frequency estimates using augmented data and averages over multiple epochs
- We show that DLFE is more effective in estimating label frequencies, and SGG models with DLFE achieves SOTA debiasing performance in VG dataset and produce significantly more balanced scene graphs.

Thank you for your attention 😳

Source code will be available at <u>https://github.com/coldmanck/recovering-unbiased-scene-graphs</u>