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Visual Relationship Detection (VRD)

e Usually represented by visual phrases:
(subject, predicate, object)
* (man, jumping over, )
* (woman, is behind, man)
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Visual Relationship Detection (VRD)

e Usually represented by visual phrases:
(subject, predicate, object)
* (man, jumping over, )
* (woman, is behind, man)

* Visual phrases in an image form a scene
graph:
* Vertices:
* Objects, Predicates or Attributes
* Another (simple) definition:
* Vertices: Objects
* Edge: Predicates

is behind

jump over




Applications Benefit from VRD: Image Caption

* Example visual relationships:
* (man,, handshakes, )
* (man,, talks to, )

* Ground-truth captions:

* a man giving another man a hand
shake on a tennis court.

* two tennis players talk to each
other near the net.




Datasets

Visual Genome CLEVR

Scene Graphs 5K Visual Relationships
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- 5000 images

- 6745 object categories
- 1310 relationship types
- Long-tailed

5000 images

100 object categories
70 relationship types
Fully-annotated

Krishna et al, IJCV 2017

108K images

33K object categories
42K relationship types
Long-tailed

Johnson et al, CVPR 2017

- 100K images

- 3 object categories
- 8relationship types
- Fully-annotated



Outline

* Visual Relationship Detection with Language Priors (ECCV 2016)
e Scene Graph Generation by Iterative Message Passing (CVPR 2017)
* Neural Motifs: Scene Graph Parsing with Global Context (CVPR 2018)

* Experiments Result
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VRD with Language Prior: Architecture
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Visual Appearance Module

* Prior to this work, visual relationship detection is generally based on
visual phrase classification [1]

* O(N2K) unique detectors where we have N objects and K predicates classes

* They propose a visual appearance module to predict objects and
predicate individually and fuse them together to form a phrase

e Reduce to O(N+K)

* Train two CNNs for classification with N classes and K predicates
respectively and model V as

V(Ri k), ©(01,02)) = Py(O1)(z, CNN(O1, O2) + sx) Pj(O2)



Language Module — Intuition 1

(person, ride, horse) (person, ride, elephant) (car, near, house)
"




Visual Relationship Space

Should encode the idea |; < |,



Language Module: Minimize dist. of relationship

e Convert object class labels to 300-dim Word2Vec vectors:
f(Rik,y, W) = w}, [word2vec(t;), word2vec(t;)] + by

* Under assumption of the distance of visual relationship is
proportional to the sum of Word2Vec distance of objects and
predicates, randomly sample pairs of ((R,R’)) and minimize the
variance to fulfill the assumption:




Language Module: Likelihood of Relationship

* Project function f should represent the occurrence likelihood of a
relationship: such as (monkey, drive, car) should have low likelihood.
We minimize rank loss function as follows:

L(W)= > max{f(R,W)— f(R,W)+1,0}




Final Objective

* Maximize the rank of the ground truth relationship R with bounding
boxes O, and O, using rank loss: Maximize correct labels’ likelihood

A
4 \
C(O,W)= > max{l—V(R,0[(01,0:))f(R, W)
(0102),R
max V(R',8](07, 05 f(R', W), 0
<og,og>¢<ol,oz>,nf¢7z\( 01, 02)) 11 3 }

Y
Minimize incorrect labels’ likeihood
* Integrating language module, the final objective is then

min{C(©, W) + M L(W) + Ao K (W)}



Strength and Weakness

* First to formulate the visual relationship detection as object &
predicate prediction respectively, reducing the complexity

* Mapping a relationship into the vector space and exploiting language
prior makes the model learn some good dataset bias

* Fails to exploit the context of objects and relationships
* |t focuses on pairwise relationships



Scene Graph Generation by Iterative Message Passing

Danfei Xu' Yuke Zhu! Christopher B. Choy® Li Fei-Fei'
1Department of Computer Science, Stanford University
*Department of Electrical Engineering, Stanford University

{danfei, yukez, chrischoy, feifeili}@cs.Stanford.edu



Scene Graph Generation by IMP
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Scene Graph Generation by IMP

CNN + RPN
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Scene Graph Generation by IMP
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Graph Inference Problem Setting

* Each node in the graph is associated with a random variable x.
* We denote the set of all variables to be
X = {:l:fz“"',;zr.t-’b"‘[’,:Lr..,;_>j|'i =1...n,7 = 1...n,i # j}

* We want to find

*

X* = argmaxy Pr(x|I, By)

that maximize the conditional probability (under Naive Bayes assumption)
Pr(x|I, By) = H HPr(:I:E"[‘“, zhbor. ri;|1, Br)

i€V j#i

* We need to do Bayesian inference to obtain the conditional probability!



Inference with Mean Field Approximation

e Exact inference on densely connected graph can be very expensive,
thus we choose variational inference to approximate the true
distribution p(x) with a simpler distribution g(x).

* Mean field variational inference factorizes distribution as product of
local variational approximation:

q(x) = I1; ¢i(;)



Mean Field Approximation using GRU

* For our setting, we denote the probability of each variable x as Q(z|)
* Mean field distribution for this setting is then:

Approximation for nodes (obj)  Approximation for edges (rel)

TL

Q(X‘I’B[) - HQ(:‘E?S’ bbm|h ) (hz|f ) H 71—>J’hz—u U’i—:»j‘ff%j)
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Node/Edge Message Pooling

Outbound edge msg inbound edge msg
mi= ) ‘U(VlT[hia hz—»j])hvﬂjh > ‘J(VQT s hj—n:])hj—n:‘

71—+ 79—t
node message pooling scene graph
: inbound i
t primal n ,
object proposal edge edge states e ,
j p p GRU graph GRU E
- node node :
edge 1 ’ N state message |
feature Dy K Sutbound node n;lelssage gd'gs
edge states pooling E
message
passing 5
object :
node state b £

edge message T , ace 0 ~ ‘

; _— |

feature . edge el GRU i mountain —behind — horse |

v i Y state message : riding d E

nG(::LeJ Sutbf:"“ nG(:G ' man wearing — hat

= wearing — shirt |

T=0 edge message pooling T=2 T=N T

mis; o (W] hi his Db o (W [y i) ]

Subject node msg  Object node msg




Scene Graph Generation by IMP  pecoding with

- softmax (labels)
- fc layer (bbox offsets)
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Strength and Weakness

* Exploit the context with graph topology using iterative message
passing

 Model degrades when iterates more than two round (noisy message
start to permeate through the graph)
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Qua\itive Result

vase

"
on in
/ \
counter flower
ARN \ N=0
"l“ on n (baseline)
bear
\
on
Z
c
B 3 vase
S 1A
P =h
on in ;’ on has
talile floxwer _ =. table flower
/TN \ N=1 Lg VARN \ groun d
at in in = has has in truth
/ = |
bear 9:9, bear
\ = \
on w» on
E
vase
1\
on with
table flower
PR \ =
under under in N=2
: v




Neural Motifs: Scene Graph Parsing with Global Context
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3School of Computer Science, Carnegie Mellon University
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https://rowanzellers.com/neuralmotifs



Visual Genome Dataset Analysis
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Type Examples Classes Instances
Entities
Part arm, tail, wheel 32 200k (25.2%)
Artifact basket, fork, towel 34 126k (16.0%)
Person boy, kid, woman 13 113k (14.3%)
Clothes cap, jean, sneaker 16 91k (11.5%)
Vehicle airplane, bike, truck, 12 44k (5.6%)
Flora flower, plant, tree 3 44k (5.5%)
Location beach, room, sidewalk 11 39k (4.9%)
Furniture bed, desk, table 9 37k (4.7%)
Animal bear, giraffe, zebra 11 30k (3.8%)
Structure fence, post, sign 3 30k (3.8%)
Building building, house 2 24k (3.1%)
Food banana, orange, pizza 6 13k (1.6%)
Relations
Geometric above, behind, under 15 228k (50.0%)
Possessive  has, part of, wearing 8 186k (40.9%)
Semantic  carrying, eating, using 24 39k (8.7%)
Misc for, from, made of 3 2k (0.3%)
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Visual Genome Dataset Analysis
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Visual Genome Dataset Analysis

Given head and tail labels, true predicate
lies in top-5 guesses 97% of the time.
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Visual Genome Dataset Analysis

Given head and tail labels, true predicate
lies in top-5 guesses 97% of the time.
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What is Neural Motif?

* Motif : (noun [c]) a pattern or design.



What is Neural Motif?

* Motif : (noun [c]) a pattern or design.
* Neural motif: repeating higher-order structure in scene graph.

e has has —
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Model

Conditional Probability Chain Rule

* Given Image | and we model graph G = {R, B, O} where R is labeld
relations, B is bounding boxes and O is object labels

e Prob of graph Pr(G|I) = Pr(R, B, O|)

=Pr(R, O|B, I) Pr(B|1)

=|Pr(R|B, O, I)

Pr(O|B, I)

Pr(B|1)]|

Relation model Object model Bounding box model



Stacked Motif Network

Bounding box model Pr(G|1) =|Pr(R|B, O, 1)|Pr(O|B, If|Pr(B|1)|
[Pr(B|1)|

<dog has head> <dog has eye> <background>
2 {

&
M /? Relation model

o—o—0—@ ®
oo oL o oo [PrRIB,O,I)

[0}
o)
=

[

Y Gy Y Y G
\

T T
D3

,
©
©
®
o@el-el

GeHel-
J
A

Pr(O|B, 1)
Object model

—

\L object context edge context
:




Strength and Weakness

* This work claims that the current works (and the previous) are only
exploiting dataset bias, thus it demonstrates a full power of that bias

* However cannot see how conditioning on previously decoded object
labels help on decoding next label (later in next slide)
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Lu et al, ECCV 2016 Xu et al, CVPR 2017 Newell et al, NIPS 2017 Zellers et al, CVPR 2018

Scene Graph Detection Scene Graph Classification Predicate Classification Mean

Model R@20 R@50 R@I00 R@20 R@50 R@100 R@20 R@50 R@100
VRD [29] 0.3 0.5 11.8 14.1 27.9 35.0 14.9
MESSAGE PASSING [47] 34 4.2 21.7 24 .4 44.8 53.0 25.3
» MESSAGE PASSING+ 14.6 20.7 24.5 31.7 34.6 354 52.7 59.3 61.3 39.3
S Assoc EMBED [3 1]« 65 8.l 8.2 182 218 22.6 479 541 554 283
£ FREQ 17.7 23.5 27.6 27.7 324 34.0 49.4 59.9 64.1 40.2
FREQ+OVERLAP 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2 40.7
MOTIFNET-LEFTRIGHT 214 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 43.6
,, MOTIFNET-NOCONTEXT 21.0 26.2 29.0 31.9 34.8 35.5 57.0 63.7 65.6 42.4
§ MOTIFNET-CONFIDENCE 21.7 27.3 30.5 32.6 35.4 36.1 58.2 65.1 67.0 43.5
% MOTIFNET-SIZE 21.6 27.3 30.4 32.2 35.0 35.7 58.0 64.9 66.8 43.3

® MOTIFNET-RANDOM 21.6 27.3 30.4 32.5 35.5 36.2 58.1 65.1 66.9 43.5
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_—g MOTIFNET-SIZE 21.6 27.3 30.4 32.2 35.0 35.7 58.0 64.9 66.8 43.3
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Qualitative result (Neural Motifs)
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 Several slides credit Justin Johnson’s talk in CVPR 2018 Tutorial on
Visual Recognition and Beyond.
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* Some pictures come from Google Image search are only for
illustration.
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Thank you for the attention! ©

Any questions?



