Visual Relationship Reasoning with Scene Graph

Meng-Jiun Chiou National University of Singapore Feburary 2, 2019

Object detection

llama next to person

Ilama chasing person

Slide credit: Ranjay Krishna

Visual Relationship Detection (VRD)

- Usually represented by visual phrases: (subject, predicate, object)
 - (man, jumping over, fire hydrant)
 - (woman, is behind, man)

Visual Relationship Detection (VRD)

- Usually represented by visual phrases: (subject, predicate, object)
 - (man, jumping over, fire hydrant)
 - (woman, is behind, man)
- Visual phrases in an image form a scene graph:
 - Vertices:
 - Objects, Predicates or Attributes

Visual Relationship Detection (VRD)

- Usually represented by visual phrases: (subject, predicate, object)
 - (man, jumping over, fire hydrant)
 - (woman, is behind, man)
- Visual phrases in an image form a scene graph:
 - Vertices:
 - Objects, Predicates or Attributes
 - Another (simple) definition:
 - Vertices: Objects
 - Edge: Predicates

Applications Benefit from VRD: Image Caption

- Example visual relationships:
 - (man₁, handshakes, man₂)
 - (man₁, talks to, man₂)
- Ground-truth captions:
 - a man giving another man a hand shake on a tennis court.
 - two tennis players **talk to each other** near the net.

man₁ man₂

Datasets

Scene Graphs 5K

Johnson et al, CVPR 2015

- 5000 images
- 6745 object categories
- 1310 relationship types
- Long-tailed

Visual Relationships

Lu et al, ECCV 2016

- 5000 images
- 100 object categories
- 70 relationship types
- Fully-annotated

Visual Genome

Krishna et al, IJCV 2017

- 108K images
- 33K object categories
- 42K relationship types
- Long-tailed

CLEVR Johnson et al, CVPR 2017

- 100K images
- 3 object categories
- 8 relationship types
- Fully-annotated

Outline

- Visual Relationship Detection with Language Priors (ECCV 2016)
- Scene Graph Generation by Iterative Message Passing (CVPR 2017)
- Neural Motifs: Scene Graph Parsing with Global Context (CVPR 2018)
- Experiments Result

Visual Relationship Detection with Language Priors

Cewu Lu^{*}, Ranjay Krishna^{*}, Michael Bernstein, Li Fei-Fei {cwlu, ranjaykrishna, msb, feifeili}@cs.stanford.edu

Stanford University

VRD with Language Prior: Architecture

VRD with Language Prior: Architecture

Visual Appearance Module

- Prior to this work, visual relationship detection is generally based on *visual phrase* classification [1]
 - O(N²K) unique detectors where we have N objects and K predicates classes
- They propose a **visual appearance module** to predict objects and predicate individually and fuse them together to form a phrase
 - Reduce to O(N+K)
- Train two CNNs for classification with *N* classes and *K* predicates respectively and model V as

$$V(R_{\langle i,k,j\rangle},\Theta|\langle O_1,O_2\rangle) = P_i(O_1)(\mathbf{z}_k^T \text{CNN}(O_1,O_2) + s_k)P_j(O_2)$$

Language Module – Intuition 1

(person, ride, horse)

(person, ride, elephant)

(car, near, house)

Visual Relationship Space

Language Module: Minimize dist. of relationship

• Convert object class labels to 300-dim Word2Vec vectors:

 $f(\mathcal{R}_{\langle i,k,j\rangle}, \mathbf{W}) = \mathbf{w}_k^T[word2vec(t_i), word2vec(t_j)] + b_k$

• Under assumption of the distance of visual relationship is proportional to the sum of Word2Vec distance of objects and predicates, randomly sample pairs of $(\langle \mathcal{R}, \mathcal{R}' \rangle)$ and minimize the variance to fulfill the assumption:

$$K(\mathbf{W}) = var(\{\frac{[f(\mathcal{R}, \mathbf{W}) - f(\mathcal{R}', \mathbf{W})]^2}{d(\mathcal{R}, \mathcal{R}')} \quad \forall \mathcal{R}, \mathcal{R}'\})$$

Language Module: Likelihood of Relationship

Project function f should represent the occurrence likelihood of a relationship: such as (monkey, drive, car) should have low likelihood.
 We minimize rank loss function as follows:

$$L(\mathbf{W}) = \sum_{\{\mathcal{R}, \mathcal{R}'\}} \max\{f(\mathcal{R}', \mathbf{W}) - f(\mathcal{R}, \mathbf{W}) + 1, 0\}$$

???

Final Objective

• Maximize the rank of the ground truth relationship R with bounding boxes O₁ and O₂ using **rank loss**: Maximize correct labels' likelihood

$$C(\Theta, \mathbf{W}) = \sum_{\langle O_1 O_2 \rangle, \mathcal{R}} \max\{1 - V(\mathcal{R}, \Theta | \langle O_1, O_2 \rangle) f(\mathcal{R}, \mathbf{W}) + \max_{\langle O_1', O_2' \rangle \neq \langle O_1, O_2 \rangle, \mathcal{R}' \neq \mathcal{R}} V(\mathcal{R}', \Theta | \langle O_1', O_2' \rangle) f(\mathcal{R}', \mathbf{W}), 0\}$$

Minimize incorrect labels' likeihood

• Integrating language module, the **final objective** is then

$$\min_{\Theta, \mathbf{W}} \{ C(\Theta, \mathbf{W}) + \lambda_1 L(\mathbf{W}) + \lambda_2 K(\mathbf{W}) \}$$

Strength and Weakness

- First to formulate the visual relationship detection as object & predicate prediction respectively, reducing the complexity
- Mapping a relationship into the vector space and exploiting language prior makes the model learn some good dataset bias

- Fails to exploit the **context** of objects and relationships
 - It focuses on *pairwise* relationships

Scene Graph Generation by Iterative Message Passing

Danfei Xu¹ Yuke Zhu¹ Christopher B. Choy² Li Fei-Fei¹ ¹Department of Computer Science, Stanford University ²Department of Electrical Engineering, Stanford University {danfei, yukez, chrischoy, feifeili}@cs.stanford.edu

CNN + RPN

Iterative Message Passing

Graph Inference Problem Setting

- Each node in the graph is associated with a random variable x_i
- We denote the set of all variables to be

$$\mathbf{x} = \{x_i^{cls}, x_i^{bbox}, x_{i \to j} | i = 1 \dots n, j = 1 \dots n, i \neq j\}$$

• We want to find

 $\mathbf{x}^* = \operatorname{arg\,max}_{\mathbf{x}} \Pr(\mathbf{x}|I, B_I)$

that maximize the conditional probability (under Naïve Bayes assumption)

$$\Pr(\mathbf{x}|I, B_I) = \prod_{i \in V} \prod_{j \neq i} \Pr(x_i^{cls}, x_i^{bbox}, x_{i \to j}|I, B_I)$$

• We need to do **Bayesian inference** to obtain the conditional probability!

Inference with Mean Field Approximation

- Exact inference on densely connected graph can be very expensive, thus we choose variational inference to approximate the true distribution p(x) with a simpler distribution q(x).
- *Mean field variational inference* factorizes distribution as product of local variational approximation:

$$q(x) = \prod_i q_i(x_i)$$

Mean Field Approximation using GRU

- For our setting, we denote the probability of each variable x as $Q(x|\cdot)$
- Mean field distribution for this setting is then:

Approximation for nodes (obj) Approximation for edges (rel) $Q(\mathbf{x}|I, B_I) = \prod_{i=1}^{n} Q(x_i^{cls}, x_i^{bbox} | h_i) Q(h_i | f_i^v) \prod_{j \neq i} Q(x_{i \to j} | h_{i \to j}) Q(h_{i \to j} | f_{i \to j}^e)$

Node/Edge Message Pooling

Decoding with - softmax (labels)

- fc layer (bbox offsets)

Strength and Weakness

- Exploit the context with graph topology using iterative message passing
- Model degrades when iterates more than **two round** (noisy message start to permeate through the graph)

Qualitative Result

Neural Motifs: Scene Graph Parsing with Global Context

Rowan Zellers¹ Mark Yatskar^{1,2} Sam Thomson³ Yejin Choi^{1,2} ¹Paul G. Allen School of Computer Science & Engineering, University of Washington ²Allen Institute for Artificial Intelligence ³School of Computer Science, Carnegie Mellon University {rowanz, my89, yejin}@cs.washington.edu, sthomson@cs.cmu.edu https://rowanzellers.com/neuralmotifs

Туре	Examples	Classes	Instances
	Entities		
Part	arm, tail, wheel	32	200k (25.2%)
Artifact	basket, fork, towel	34	126k (16.0%)
Person	boy, kid, woman	13	113k (14.3%)
Clothes	cap, jean, sneaker	16	91k (11.5%)
Vehicle	airplane, bike, truck,	12	44k (5.6%)
Flora	flower, plant, tree	3	44k (5.5%)
Location	beach, room, sidewalk	11	39k (4.9%)
Furniture	bed, desk, table	9	37k (4.7%)
Animal	bear, giraffe, zebra	11	30k (3.8%)
Structure	fence, post, sign	3	30k (3.8%)
Building	building, house	2	24k (3.1%)
Food	banana, orange, pizza	6	13k (1.6%)
	Relations		
Geometric	above, behind, under	15	228k (50.0%)
Possessive	has, part of, wearing	8	186k (40.9%)
Semantic	carrying, eating, using	24	39k (8.7%)
Misc	for, from, made of	3	2k (0.3%)

Туре	Examples	Classes	Instances						
Entities									
Part	arm, tail, wheel	32	200k (25.2%)						
Artifact	basket, fork, towel	34	126k (16.0%)						
Person	boy, kid, woman	13	113k (14.3%)						
Clothes	cap, jean, sneaker	16	91k (11.5%)						
Vehicle	airplane, bike, truck,	12	44k (5.6%)						
Flora	flower, plant, tree	3	44k (5.5%)						
Location	beach, room, sidewalk	11	39k (4.9%)						
Furniture	bed, desk, table	9	37k (4.7%)						
Animal	bear, giraffe, zebra	11	30k (3.8%)						
Structure	fence, post, sign	3	30k (3.8%)						
Building	building, house	2	24k (3.1%)						
Food	banana, orange, pizza	6	13k (1.6%)						
	Relations								
Geometric	above, behind, under	15	228k (50.0%)						
Possessive	has, part of, wearing	8	186k (40.9%)						
Semantic	carrying, eating, using	24	39k (8.7%)						
Misc	for, from, made of	3	2k (0.3%)						

Туре	Examples	Classes	Instances		
	Entities				
Part	arm, tail, wheel	32	200k (25.2% 126k (16.0%		
Artifact	basket, fork, towel	34			
Person	boy, kid, woman	13	113k (14.3%)		
Clothes	cap, jean, sneaker	16	91k (11.5%)		
Vehicle	airplane, bike, truck,	12	44k (5.6%)		
Flora	flower, plant, tree	3	44k (5.5%)		
Location	beach, room, sidewalk	11	39k (4.9%)		
Furniture	bed, desk, table	9	37k (4.7%)		
Animal	bear, giraffe, zebra	11	30k (3.8%)		
Structure	fence, post, sign	3	30k (3.8%)		
Building	building, house	2	24k (3.1%)		
Food	banana, orange, pizza	6	13k (1.6%)		
	Relations				
Geometric	above, behind, under	15	228k (50.0%)		
Possessive	has, part of, wearing	8	186k (40.9%)		
Semantic	carrying, eating, using	24	39k (8.7%)		
Misc	for, from, made of	3	2k (0.3%)		

Given head and tail labels, true predicate lies in top-5 guesses **97%** of the time.

Given head and tail labels, true predicate lies in top-5 guesses **97%** of the time.

What is Neural Motif?

• *Motif* : (noun [c]) a pattern or design.

What is Neural Motif?

- *Motif* : (noun [c]) a pattern or design.
- Neural motif: repeating higher-order structure in scene graph.

Model

Conditional Probability Chain Rule

- Given Image I and we model graph G = {R, B, O} where R is labeld relations, B is bounding boxes and O is object labels
- Prob of graph Pr(G|I) = Pr(R, B, O|I)
 - = Pr(R, O|B, I) Pr(B|I)
 = Pr(R|B, O, I) Pr(O|B, I) Pr(B|I)
 Relation model Object model Bounding box model

Stacked Motif Network

Strength and Weakness

- This work claims that the current works (and the previous) are only exploiting dataset bias, thus it demonstrates a full power of that bias
- However cannot see how conditioning on previously decoded object labels help on decoding next label (later in next slide)

Results

		Scene Graph Detection			Scene Graph Classification			Predicate Classification			Mean
	Model	R@20	R@50	R@100	R@20	R@50	R@100	R@20	R@50	R@100	
	Vrd [29]		0.3	0.5		11.8	14.1		27.9	35.0	14.9
	MESSAGE PASSING [47]		3.4	4.2		21.7	24.4		44.8	53.0	25.3
ls	Message Passing+	14.6	20.7	24.5	31.7	34.6	35.4	52.7	59.3	61.3	39.3
ode	Assoc Embed [31]*	6.5	8.1	8.2	18.2	21.8	22.6	47.9	54.1	55.4	28.3
ŭ	Freq	17.7	23.5	27.6	27.7	32.4	34.0	49.4	59.9	64.1	40.2
	Freq+Overlap	20.1	26.2	30.1	29.3	32.3	32.9	53.6	60.6	62.2	40.7
	MOTIFNET-LEFTRIGHT	21.4	27.2	30.3	32.9	35.8	36.5	58.5	65.2	67.1	43.6
~	MOTIFNET-NOCONTEXT	21.0	26.2	29.0	31.9	34.8	35.5	57.0	63.7	65.6	42.4
ion	MOTIFNET-CONFIDENCE	21.7	27.3	30.5	32.6	35.4	36.1	58.2	65.1	67.0	43.5
olat	MOTIFNET-SIZE	21.6	27.3	30.4	32.2	35.0	35.7	58.0	64.9	66.8	43.3
at	MOTIFNET-RANDOM	21.6	27.3	30.4	32.5	35.5	36.2	58.1	65.1	66.9	43.5

Results

		Scene Graph Detection			Scene Graph Classification			Predicate Classification			Mean
	Model	R@20	R@50	R@100	R@20	R@50	R@100	R@20	R@50	R@100	
	Vrd [29]		0.3	0.5		11.8	14.1		27.9	35.0	14.9
	MESSAGE PASSING [47]		3.4	4.2		21.7	24.4		44.8	53.0	25.3
ls	Message Passing+	14.6	20.7	24.5	31.7	34.6	35.4	52.7	59.3	61.3	39.3
ode	Assoc Embed [31]*	6.5	8.1	8.2	18.2	21.8	22.6	47.9	54.1	55.4	28.3
Ē	Freq	17.7	23.5	27.6	27.7	32.4	34.0	49.4	59.9	64.1	40.2
	Freq+Overlap	20.1	26.2	30.1	29.3	32.3	32.9	53.6	60.6	62.2	40.7
	MOTIFNET-LEFTRIGHT	21.4	27.2	30.3	32.9	35.8	36.5	58.5	65.2	67.1	43.6
~	MOTIFNET-NOCONTEXT	21.0	26.2	29.0	31.9	34.8	35.5	57.0	63.7	65.6	42.4
ion	MOTIFNET-CONFIDENCE	21.7	27.3	30.5	32.6	35.4	36.1	58.2	65.1	67.0	43.5
ablat	MOTIFNET-SIZE	21.6	27.3	30.4	32.2	35.0	35.7	58.0	64.9	66.8	43.3
	MOTIFNET-RANDOM	21.6	27.3	30.4	32.5	35.5	36.2	58.1	65.1	66.9	43.5

Qualitative result (Neural Motifs)

References and acknowledgement

- [1] Sadeghi, M.A., Farhadi, A.: Recognition using visual phrases. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE (2011) 1745–1752
- Several slides credit Justin Johnson's talk in CVPR 2018 Tutorial on Visual Recognition and Beyond. <u>https://drive.google.com/open?id=1dG3F600bF8-</u> ppAlrIE3KWZ0i4YAQ5Uka
- Some pictures come from Google Image search are only for illustration.

Thank you for the attention! 😳

Any questions?