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Motivation |- HOI in Videos

* HOI is defined as a relationship between a
subject (human) and an object (any class).
Can be action or spatial predicate
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* HOI is defined as a relationship between a
subject (human) and an object (any class).
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Object Proposals
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temporal contexts in prior work. aly T Frame

* It is unlikely for both humans and machines to
guess from a single video frame that a person
is “opening” or “closing” a door, where
neighboring frames play an essential role.

Feature maps Softmax Prob.

Push Pull lean_on

* A possible reason for relatively under-
explored video HOI is the lack of dataset
and its corresponding setting



Proposed Method |- VideoHO!

* We establish a benchmark named VidHOI (from VidOR), in which we
follow the common protocol in video tasks to use a keyframe-
centered strategy, where evaluation keyframes are sampled from
testing videos with 1-Hz frequency

e With VidHOI we urge the use of video data to predict VideoHOI




Motivation Il — Preliminary Experiment

* In spatial-temporal action detection (STAD), a popular baseline is to
use 3D-CNN to extract person’s feature followed by classification. This
is similar to HOI methods (i.e.,“2D baseline”) and differs only in the
absence of object features & the 3D backbone.



Motivation Il — Preliminary Experiment

* In spatial-temporal action detection (STAD), a popular baseline is to
use 3D-CNN to extract person’s feature followed by classification. This
is similar to HOI methods (i.e.,“2D baseline”) and differs only in the
absence of object features & the 3D backbone.

* We thus did a preliminary experiment to make it consider object
features as well (i.e., “3D baseline”).
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Motivation || — Feature Inconsistency Problem

* However, we found that 3D baseline does not outperform 2D baseline
significantly (only ~2%). Worse results have been found in STAD and
STSGG literature showing 3D backbones are

(a) Video-to-Image Performance Ratio
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Motivation Il — Feature Inconsistency Problem

* However, we found that 3D baseline does not outperform 2D baseline
significantly (only ~2%). Worse results have been found in STAD and
STSGG literature showing 3D backbones are

* We probed the reason and found that Temporal-Rol pooling does not
work correctly by cropping feature of the same region through the
video segment (cuboid). This does not consider the way objects move
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Motivation || — Feature Inconsistency Problem

* However, we found that 3D baseline does not outperform 2D baseline
significantly (only ~2%). Worse results have been found in STAD and
STSGG literature showing 3D backbones are

* We probed the reason and found that Temporal-Rol pooling does not
work correctly by cropping feature of the same region through the
video segment (cuboid). This does not consider the way objects move

* We try to recover this missing information by appending trajectory to
the subject/object visual feature and achieve a “23% improvement

Object
Proposals
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Proposed Method Il — Trajectory-based Feature

(a) Conventional HOI inference on videos

Object Proposals
Feature maps Softmax Prob.

* We propose ST-HOI with three P Ry -
trajectory-based spatial-temporal o RN - I I I
features: only T Frame o e 1

* Correctly-localized Visual Feature
* Spatial-Temporal Masking Pose Feature
* Trajectory Feature
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(b) ST-HOI inference




Trajectory-based Spatial-Temporal Features
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Prediction and Training

* We simply concatenate all features

Vso = ['Ds; @u; 50;.73;.70;530])

* Detection uses predicted boxes

Pose Module

* A multilabel problem -> train with o Temotmwarcfestwremaps  Softmxbrob
binary cross entropy loss o I
) . N V:.;‘:, o:z
* Two modes during testing: ' g | L
* Oracle uses GT boxes for test set | p
N L p— ‘ ] :

Generation :
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* We use pretrained pose estimation (5) ST-HO! inference
model (FastPose)




Dataset

» Keyframe-centered evaluation strategy: test frames sampled in 1 fps
* 78 object classes and 50 predicates
e 557 (Full) HOI classes including 315 (Rare) or 242 (Non-rare)

Table 1: A comparison of our benchmark VidHOI with existing STAD (AVA [11]), image-based (HICO-DET [3] and V-COCO
[12]) and video-based (CAD-120 [21] and Action Genome [20]) HOI datasets. VidHOI is the only dataset that provides temporal
information from video clips and complete multi-person and interacting-object annotations. VidHOI also provides the most
annotated keyframes and defines the most HOI categories in the existing video datasets. {Two less categories as we combine
adult, child and baby into a single category, person.

Dafase Video Localized Video # Videos # Annotated  # Objects  # Predicate # HOI # HOI

dataset? object? hours images/frames  categories = categories categories Instances
HICO-DET [3] X v - - 47K 80 117 600 150K
V-COCO [12] X v - - 10K 80 25 259 16K
AVA [11] v X 108 437 3.7M - 49 80 1.6M
CAD-120 [21] v v 0.57 0.5K 61K 13 6 10 32K
Action Genome [20] v A 82 10K 234K 35 25 157 1.7M
VidHOI v v 70 7122 7.3M 78F 50 557 755K




Evaluation Metrics

 Mean Average Precision w.r.t. class frequencies: (a) Full, (b) Non-rare

and (c) rare
* Mean Average Precision w.r.t. modalities: (a) Temporal and (b) Spatial
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Quantitative Results |

Table 2: Results of the baselines and our ST-HOI on Vid-
HOI validation set (numbers in mAP). There are two eval-
uation modes: Detection and Oracle, which differ only
in the use of predicted or ground truth trajectories during
inference. T: Trajectory features. V: Correctly-localized vi-
sual features. P: Spatial-temporal masking pose features. "%"
means the full mAP change compared to the 2D model.

Model Full Non-rare Rare %
2D model [39] | 14.1 22.9 113 -
3D model 14.4 23.0 126 2.1
= Ours-T 17.3 26.9 16.8 227
S Ours-T+V 173 269 163 227
Ours-T+P 17.4 2751 164 234
Ours-T+V+P | 17.6  27.2 17.3 24.8
2D model [39] | 2.6 4.7 1:7 2
~ 3D model 2.6 4.9 19 0.0
£ OursT 3.0 55 20 154
S Ours-T+V 3.1 5.8 20 19.2
Q QOurs-T+P 3.2 6.1 20 23.1
Ours-T+V+P 3.1 5.9 2.1 192
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Table 2: Results of the baselines and our ST-HOI on Vid-
HOI validation set (numbers in mAP). There are two eval-
uation modes: Detection and Oracle, which differ only
in the use of predicted or ground truth trajectories during
inference. T: Trajectory features. V: Correctly-localized vi-
sual features. P: Spatial-temporal masking pose features. "%"
means the full mAP change compared to the 2D model.

Model Full Non-rare Rare %
2D model [39] | 14.1 22.9 113 -
3D model 14.4 23.0 126 | 2.1
§ Ours-T 17.3 26.9 16.8 | 22.7
&S Ours-T+V 17.3 26.9 163 227
Ours-T+P 17.4 27.1 164 234 Trajectory is very useful
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2D model [39] | 2.6 4.7 17 -
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Ours-T+V+P 3.1 5.9 2.1 192




Quantitative Results |

Table 2: Results of the baselines and our ST-HOI on Vid-
HOI validation set (numbers in mAP). There are two eval-
uation modes: Detection and Oracle, which differ only
in the use of predicted or ground truth trajectories during
inference. T: Trajectory features. V: Correctly-localized vi-
sual features. P: Spatial-temporal masking pose features. "%"
means the full mAP change compared to the 2D model.

Model Full Non-rare Rare %
2D model [39] | 14.1 22.9 113 -
3D model 14.4 23.0 12.6 2.1
= Ours-T 17.3 26.9 16.8 22.7
S Ours-T+V 173 269 163 227
Ours-T+P 17.4 27:1 164 234
Ours-T+V+P | 17.6 272 17.3 24.8 | Full model gets the highest performance in Oracle mode
2D model [39] | 2.6 4.7 1:7 =
= 3D model 2.6 49 1.9 0.0
£ OursT 3.0 55 20 154
§ Ours-T+V 3.1 5.8 20 19.2
83;:}:5@ ‘2? gj; ;2 :igzl Performance improvement saturates when adding V/P feats
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Table 2: Results of the baselines and our ST-HOI on Vid-
HOI validation set (numbers in mAP). There are two eval-
uation modes: Detection and Oracle, which differ only
in the use of predicted or ground truth trajectories during
inference. T: Trajectory features. V: Correctly-localized vi-
sual features. P: Spatial-temporal masking pose features. "%"

means the full mAP change compared to the 2D model.

Model Full Non-rare Rare %
2D model [39] | 14.1 22.9 113 -
3D model 14.4 23.0 126 2.1
= Ours-T 17.3 26.9 16.8 227
S Ours-T+V 173| 269 163 227
Ours-T+P 17.4 2751 164 234
Ours-T+V+P | 17.6  27.2 17.3 24.8
2D model [39] | 2.6 4.7 1:7 2
= 3D model 2.6 49 1.9 0.0
£ OursT 3.0 55 20 154
S Ours-T+V 3.1 5.8 20 19.2
R Ours-T+P 3.2 6.1 2.0 23.1
Ours-T+V+P 3.1 5.9 2.1 19.2

The ground truth trajectories (T) may have provided
enough “correctly-localized” spatial-temporal information.
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Table 2: Results of the baselines and our ST-HOI on Vid-
HOI validation set (numbers in mAP). There are two eval-
uation modes: Detection and Oracle, which differ only
in the use of predicted or ground truth trajectories during
inference. T: Trajectory features. V: Correctly-localized vi-
sual features. P: Spatial-temporal masking pose features. "%"

means the full mAP change compared to the 2D model.

Model Full | Non-rare Rare %
2D model [39] | 14.1 22.9 113 -
3D model 14.4 23.0 126 | 2.1
§ Ours-T 17.3 26.9 16.8 | 22.7
&S Ours-T+V 17.3 26.9 16.3 | 22.7
Ours-T+P 17.4 27:1 16.4 | 234
Ours-T+V+P | 17.6| 27.2 17.3 | 24.8
2D model [39] | 2.6 4.7 17 -
= 3D model 2.6 49 1.9 0.0
£ OursT 3.0 55 20 154
S Ours-T+V 3.1 5.8 20 19.2
R Ours-T+P 3.2 6.1 2.0 23.1
Ours-T+V+P 3.1 5.9 2.1 192

Strong long-tail effect (but natural)



Quantitative Results Il

- Under most of circumstances naively replacing 2D backbones with 3D ones doesn’t help VideoHOI detection
- Again, both temporal predicates (e.g. towards, away, pull) and spatial (next to, behind, beneath) predicates
benefit from the additional temporal-aware features

2D model
3D model
Ours-T
Ours-T+V
Ours-T+P
Ours-T+V+P

20 1

10 A

Figure 4. Performance comparison in predicate-wise mAP (pmAP). The performance boost after adding trajectory features is observed
for most of the predicates. Interestingly, both spatial (e.g. next to, behind, beneath) and temporal (e.g. towards, away, pull)
predicates benefit from the temporal-aware features. Predicates are sorted by the number of occurrence. Models are in Oracle mode.



Quantitative Results [lI

Table 3: Results of temporal-related and spatial (non-
Temporal-predicates are helped a lot with our temporal) related triplet mAP. T%/S% means relative tempo-

proposed model, in sharp contrast to 2D/3D baselines ral/spatial mAP change compared to 2D model [39].

Temporal T% Spatial S%
Temporal-related Predicate mAPs (Most Frequent) 2D model [39] 8.3 _ 18.6 _
25 1 ’ '
o 3D model 7.7 72 209 123
WV
o m Ours T+V+P E Ours-T 14.4 73.5 247  32.8
15 - ’5 Ours-T+V 13.6 63.9 24.6 32:3
- Ours-T+P 12.9 554 25.0 344
Ours-T+V+P 144 73.5 25.0 344
o 2D model [39] 15 - 2. -
0 = 3D model 1.6 6.7 2.9 7.4
7] ] ) Qv = ~ 9.
%% B g g g S 2 2z 3 Ours-T 1.8 20.0 3.3 236
F 8 8  Ours-T+V 1.8 20.0 3.3 23.6
S Ours-T+P 1.8 200 3.3  23.6
Ours-T+V+P 1.9 26.7 3.3 23.6




Quantitative Results Il

Trajectories are especially helpful
for temporal-related predicates

Table 3: Results of temporal-related and spatial (non-
Temporal-predicates are helped a lot with our temporal) related triplet mAP. T%/S% means relative tempo-

proposed model, in sharp contrast to 2D/3D baselines ral/spatial mAP change compared to 2D model [39].

Temporal T% Spatial S%
Temporal-related Predicate mAPs (Most Frequent) 2D model [39] 8.3 _ 18.6 _
25 1 - '
o 3D model 7.7 -72 | 209 123
WV
o m Ours T+V+P B Ours-T 14.4 73.5 | 247 328
15 - ’CS Ours-T+V 13.6 63.9 24.6 32:3
- Ours-T+P 12.9 554 25.0 344
Ours-T+V+P 144 73.5 25.0 344
o 2D model [39] 15 - 2. -
0 = 3D model 1.6 6.7 2.9 7.4
7] ] ) Qv = ~ 9.
g B g g g S 2 2z 3 Ours-T 1.8 20.0 3.3 236
F 8 8  Ours-T+V 1.8 20.0 3.3 23.6
S Ours-T+P 1.8 200 3.3  23.6
Ours-T+V+P 1.9 26.7 3.3 23.6




Quantitative Results Il

Temporal-predicates are helped a lot with our
proposed model, in sharp contrast to 2D/3D baselines

Temporal-related Predicate mAPs (Most Frequent)

mm 2D model
B 3D model
mm Ours T+V+P

pull
hit

z g 3 g 5 ES
8

Full model gets the highest performance

Table 3: Results of temporal-related and spatial (non-
temporal) related triplet mAP. T%/S% means relative tempo-
ral/spatial mAP change compared to 2D model [39].

Temporal T% Spatial S%

2D model [39] 8.3 = 18.6 -

3D model W 72 209 123

§ Ours-T 144 735 247 328
’CS Ours-T+V 13.6 63.9 24.6 32:3
Ours-T+P 12.9 554 25.0 344
Ours-T+V+P 14.4 73.5 25.0 344
2D model [39] 15 - 2.7 -

= 3D model 1.6 6.7 2.9 7.4
g OursT 18 200 33 236
S Ours-T+V 1.8 200 3.3 236
S Ours-T+P 1.8 200 3.3  23.6
| Ours-T+V+P 1.9 26.7 3.3  23.6|




Qualitative

Compared to the 2D baseline, our
model predicts more accurate
HOIs (e.g. hold_hand _of in T4 and
T5 of the upper example and lift
in T1 of the lower example).
ST-HOI also produces less false
positives in both examples.

? 2D-baseline ST-HOI Full
j T=1 T=2 T=3 T=4 T= T= T=2 T=3 T=4 T=5
next_to o (o] (o) o o 0 0 (o) (o) (o)
watch 9] 0 ) 0 0 0] 0] 0] 0] o]
towards 0 0 0 0 0 o] 0] 0] 0 0
hold_hand_of - - X X . - - 0] 0]
in_front_of o 0 0 0 0 0 o o 0 0
behind 0 0 0 0 0 0] 0 (o] (o] 0]
hold = 0 5 = - - - - -
lean_on 0
hug 0 - - : : : -
away g 0 0 0 0 0 0

O:TP
O:FP
X: FN
-:TN
? 2D-baseline ST-HOI Full
' T=1 T=2 T=3 T=4 T=5 T=1 =2 T=3 T=4 T=5
next_to o} o 0 o} o} o] o} o} o] o]
behind o} 0 o) 0 o 0 0 o} o} o}
lift x | X X X - 0 X X X -
in_front_of 0 0] o] o] 0 0] 0] 0] 0 0
hug - 0 X o} o) 0 o) X o} o}
above o 0 - (0] o 0 = - : N
watch 0 0 0 (o] 0 (o] 0 0 0 0
hold - (o] o] o] - (o] 0 0
lean_on 0 0 0] 0 0]
O:TP
O: FP
X: FN
-:TN




Conclusion

* In this work, we addressed the inability of conventional HOI
approaches to recognize temporal-aware HOls by re-focusing on
neighboring video frames

* We discussed the existing problems in conventional VideoHOI:
* the lack of a suitable setting and dataset;
 feature-inconsistency problem due to the improper order of Rol/temporal
pooling
* We established a video HOI benchmark VidHOI. We then proposed a
spatial-temporal baseline ST-HOI which exploits trajectory-based
temporal features

* We showed that our model provides a huge performance boost
compared to both the 2D and 3D baselines and is effective in
differentiating temporal-related HOls.




Thank you for your attention! ©

Code and dataset available at https://github.com/coldmanck/VidHOI



https://github.com/coldmanck/VidHOI

