
Zero-Shot Multi-View Indoor Localization 
via Graph Location Networks

We aim to provide an infrastructure-free, 
image-based indoor localization system.
[Motivation I] Feature Propagation between 
Views: Existing works working on panorama 
images. Shouldn’t we treat these views 
differently?

[Motivation II] Reduce Costs with zero-shot 
Learning

We assume 
the unseen 
locations are 
in-between 
seen 
locations. 
Thus, the 
training data 
is reduced 
by ~50%
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Methodology
We propose a multi-view image-based localization method 
that utilizes Graph Neural Networks (GNNs) to propagate 
distinct features of different views. Message-passing with GNNs 
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Zero-Shot Indoor Localization: A Three-step framework:
1. Train Map2Vec location embeddings (seen & unseen data)
2. Train an inloc system w/ compatibility function (seen data)
3. Perform Inference by picking the most probable location

Background & Motivation

We experimented our proposed approach on 2 datasets: 
1) ICUBE: existing dataset of an office
2) WCP: additional dataset at shopping center
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