2020
ACMmultimedia Seattle

INUS

S, / National University
’/  of Singapore

/ero-Shot Multi-View Indoor Localization
via Graph Location Networks

Meng-Jiun Chiou?l, Zhenguang LiuZ", Yifang Yin!, An-An Liu3, Roger Zimmermann?

INational University of Singapore ?Zhejiang Gongshang University 3Tianjin University

*Corresponding author



2020
ACMmultimedia Seattle

% National University
of Singapore

Background & Motivation
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Localization

* Objective: Accurate positioning of user(s)
* Outdoor: Global Positioning System (GPS)!: 3-5 meters accuracy /-
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* Indoor:
* Signal based: WiFi?, Bluetooth3, magnetism#, optics>, etc. I
* Require additional infrastructures (WiFi access points/transmitters/receivers)

* Image based (this work) »
* Require only minimal setup

Lhttps://www.gizmochina.com/2017/09/26/broadcoms-highly-accurate-gps-chip-arriving-smartphones-next-year/

2 https://eloquentarduino.github.io/2019/12/wifi-indoor-positioning-on-Arduino/
3Li et al. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model. Sensors. 18. 2820
4Chung, Jaewoo, et al. "Indoor location sensing using geo-magnetism." Proceedings of the 9th international conference on Mobile systems, applications, and services. 2011.

>Chen, Hao, et al. "Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm." Optics Communications 413 (2018)



https://www.gizmochina.com/2017/09/26/broadcoms-highly-accurate-gps-chip-arriving-smartphones-next-year/
https://eloquentarduino.github.io/2019/12/wifi-indoor-positioning-on-Arduino/

2020
ACMmultimedia Seattle

I\/Iotlvatlon |: Feature Propagation between Views

* Multi-view: we assume there are four views at each location. Namely,
front, right, back and left.

*Images are from WCP dataset
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I\/Iohvatlon |: Feature Propagation between Views

* Multi-view: we assume there are four views at each location. Namely,
front, right, back and left.

. i Query Images
*Images are from WCP dataset e
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I\/Iotlvatlon |: Feature Propagation between Views

* Multi-view: we assume there are four views at each location. Namely,
front, right, back and left.

*Images are from WCP dataset
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* Shouldn’t we treat these views differently?  wuiivewingoorimages witn oor ian

* Each view features more/less information needed for location retrieval. We
should treat them differently to get a holistic representation of a location.
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* s it possible to reduce labelling costs (training data collection), by not
collecting some of the locations?
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I\/Iohvahon II: Reduce Costs via Zero-shot Learnmg

* s it possible to reduce labelling costs (training data collection), by not
collecting some of the locations?

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Stairs

| @®—® 1 meterinterval |

* We assume the unseen locations are in-between seen locations. Thus,
the training data is reduced by ~50%
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Methodology
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Graph wLocahon Networks (GLN)

* We propose a multi-view image based localization method that
utilizes Graph Neural Networks (GNNs) to propagate distinct features
of different views.

Feature Extraction Module Message-Passing Module Location Prediction Module
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Graph wLocahon Networks (GLN)

* We propose a multi-view image based localization method that
utilizes Graph Neural Networks (GNNs) to propagate distinct features
of dlfferent views.

Feature Extraction Module : Message-Passing Module Location Prediction Module
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Graph wLocat|on Networks (GLN)

* We propose a multi-view image based localization method that
utilizes Graph Neural Networks (GNNs) to propagate distinct features
of different views.

Feature Extraction Module* Message-Passing Module E Location Prediction Module
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Message-passing with GNNs
(w/ or w/o attention mechanism)



GNNS & Attention Mechanism

* Graph Conv Nets:

l
hl‘=

ri,
{0' (ZjeN(i) a%jwl_lhi-_l),

* \Where normalization constant

aij = VINGN ()|
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GNNS & Attention Mechanism

ri, lfl — 1
* Graph Conv Nets: h’.={ ey .
l G(Zj eN(i) %‘jw 1hj 1)’ otherwise Message-Passing Module
* Where normalization constant
Initial
Graph
aij = VINGN ()| G

* We try to employ attention mechanism to actively
assign different weights for views

exp(o(a[W'h,, W'hL]))
a.. = 5
Y Sken exp(o(a[Wih, Wik 1))
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Graph wLocat|on Networks (GLN)

* We propose a multi-view image based localization method that
utilizes Graph Neural Networks (GNNs) to propagate distinct features
of different views.
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Feature Extraction Module Message-Passing Module E Location Prediction Module
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Training against cross-entropy loss
Inference by picking the most confident location



* A Three-step framework:
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* A Three-step framework:

1) Train Map2Vec location embeddings for both seen & unseen locations

(a)
(2,2) (3,2) (4,2)
(6,2)
(6,1)
(6,0)

(6,-1)

(6,-2)

Output: Map2Vec Location Embedding
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Enabhng /ero-Shot Indoor Localization

* A Three-step framework:

1) Train Map2Vec location embeddings for both seen & unseen locations

2) Train an indoor localization architecture (e.g. GLN), where an additional
layer (compatibility function) was additionally added, with only seen data

(@) (b)

(2,2) (3,2) (4,2)

62
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(6,0) :
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(6,-2) =
: Image Rep.
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Seen

Output: Map2Vec Location Embedding Training: F(a: Y ) _ ¢(X)TW1/)(y )
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EnaQbhng /ero-Shot Indoor Localization

* A Three-step framework:

1) Train Map2Vec location embeddings for both seen & unseen locations

2) Train an indoor localization architecture (e.g. GLN), where an additional
layer (compatibility function) was additionally added, with only seen data

3) Perform Inference by plcklng the most probable location
(a) : (b)

(2,2) (3,2) (4,2)

62
61 :

(6,0) &

o0 iy
(6,-2)

: Image Rep.

¢ (x)

V(ys)

Seen

Output: Map2Vec Location Embedding Training: F'(z,y,) = ¢(X)TW’(/)(yS) Prediction: y* = argmax F'(z,y)
: : yey
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Datasets

* We experimented our proposed approach on two datasets

* ICUBE: an existing dataset in an office building
* 2,896 photos of 214 |locations
* Under standard setting, 1,712/1,184 images for training/testing

* Under zero-shot setting, 1,368/1,528 images for training/testing where
102/112 locations as seen/unseen data

* WCP: collected ourselves in a shopping center
e 3,280 photos of 394 |locations
* Under standard setting, 2,624/656 images for training/testing

* Under zero-shot setting, 1,696/1,584 images for training/testing where
204/190 locations as seen/unseen data
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Dataset | Method Meter-level Accuracy
Pedes [23] 58.30%
Magicol [39] 69.20%
ICUBE Matching [30] 75.00%
MVG [26] 82.50%
GLN-STA 93.92%
GLN-STA-ATT 90.88%
MALL-1% | Sextant [11] 47%
MALL-2% | Geolmage [24] 53%
WCP GLN-STA 79.88%
GLN-STA-ATT 79.88%

Table 1: Performance comparison with state-of-the-art mod-
els on ICUBE, WCP and the respective MALL datasets. Re-
sults of previous approaches on ICUBE are taken from [26],
while results on distinct MALL datasets are taken from their
respective papers. tMALL-1 consists of 108 locations and
686 images. $Mall-2 contains 20,000 images (locations).

Resu\ts)on Standard Indoor Localization
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The CDF of error distribution of top-1 prediction

1.00 A
= 4
0.95 _ /
0.90 A
0.85 A
B 0.80 A
@]
0.75 A1 —8— GLN-STA
0.70 - —8— GLN-STA-ATT
' —¥— MVG
0.65 - Matching
—»%— Magicol
0.60 A —&— Pedes
1 2 3 4 =) 6

Localization error (m)

Figure 5: The cumulative distribution function (CDF) curves
of the localization error of the previous and our approaches
in standard indoor localization setting on ICUBE dataset.
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Results on Zero-Shot Indoor Localization

The CDF of error distribution of top-1 prediction

ICUBE WCP
054 —*- GLN-ZS-ATT B
0.7 1 -@- GLN-ZS 7
Recall@k CDF@k =X~ Baseline-coord ‘I/
Dataset Method MED 0.6 - s | ]
k=1 k=2 k=3 k=5 k=10 | k=1 k=2 k=3 k=5 k=10 ' K
: 0.5 !
Baseline-coord | 0.00 0.01 0.02 0.03 0.03 3.53 3.73 5.96 11.65 23.95 | 23.00 GLN-ZS-ATT - *:::.
ICUBE | GLN-ZS | 812 1440 2278 3089 46.60 | 19.90 3377 4581 56.28 74.87 | 3.76 g 041 —8— GLN-ZS e
—*— Baseline-coord ‘,0
GLN-ZS-ATT | 8.38 14.92 23.30 32.20 45.81 | 1859 34.55 4371 55.24 73.04 | 4.09 0.3 0.2 1 /}’/
4
Baseline-coord | 0.00 0.00 0.00 0.00 0.00 1.01 1.01 2.78 3.79 8.84 | 27.00 0.2 1 /‘/
0.1 A
WCP GLN-ZS 2.02 6.06 7.83 1237 24.75 | 8.84 13.38 1742 2298 50.25 | 9.97 01 ¢ *_K,x_x
: e Y€
GLN-ZS-ATT | 2.02 455 833 13.64 2450 | 9.09 13.38 19.70 25.00 51.52 | 9.93 0.0 0.0 e
Table 2: Results of zero-shot indoor localization in comparison of Recall@k, CDF@k and Median Error Distance (MED) on 123456738910 12345678910
ICUBE and WCP datasets. Note that numbers of recall and CDF are in % (the higher the better), while the numbers of median LoEalizAtion SEEoF (i Lacalization ekroir. ()

error distance are in meter (the lower the better). MED results are estimated with linear interpolation.
Figure 6: The cumulative distribution function (CDF) curves
of the localization error of the zero-shot indoor localization
experiments on ICUBE (left) and WCP (right) datasets.
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Query Images
Prediction:
Location 114 (unseen)

Query Images
Prediction:
Location 125 (unseen)

Query Images
Prediction:
Location 161 (unseen)

(d)

(seen)

Query Images
Prediction:
Location 331 (unseen)

(e)
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Incorrectly matched

Prediction:

Query Images
(GT: Location 186)

Location 136

Prediction:
Location 168

Query Images
(GT: Location 274)

(f)

Figure 7: Qualitative results of zero-shot indoor localization on ICUBE (the top row) and WCP (the bottom row) dataset. The
first two columns show examples of successful localization cases by utilizing the adjacency of seen classes to unseen classes,
where the red, blue and green circles represent three adjacent locations. The last column shows examples of unsuccessful
localization cases where our system is misled, especially when there are more query photos lacking distinguishable features.



* We propose a nhovel neural network based architecture Graph
Location Networks (GLN) to perform multi-view indoor localization.
GLN takes in different views and makes location predictions based on
robust location representations with message-passing mechanism.

* We propose a novel, three-step zero-shot learning framework for
indoor localization that can be applied to any indoor localization
approach.

* We additionally contribute an indoor localization dataset, WCP.

* We show through quantitative and qualitative results that our model
achieves state-of-the-art under standard setting and produces
promising results under zero-shot setting.
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Thank you for your attention!



